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A SIMPLE AND ACCURATE METHOD FOR CALCULATIING 
VISCOSITY OF GASEQUS MIXTURES 

By Thomas A. Elavidson' 

ABSTRACT 

The Bureau of Mines Helium Field Operations has developed a simple and accurate method for 
calculating the viscosity of gas mixtures. Only the composition of the mixture and the molecular weights 
and viscosities of the pure components in the mixture are required. The momentum fraction of a 
mixture is calculated from the composition. The fluidity is calculated as a quadratic function of the 
momentum fractions. The efficiency factor for transfer of momentum in collisions between bodies of 
different masses is derived and used with one empirical constant. The viscosity is the reciprocal of the 
fluidity. Results of the method are compared with 752 reported viscosities for 40 dilute binary systems 
at temperatures from -78 to 276.9' C. Using this method the average absolute deviation is 1.29%, the 
root-mean-square deviation is 1.99%, and the average deviation is -0.84%. 

'chemist, Helium Field Operations, U.S. Bureau of Mines, Amarillo, TX. 



Accurate knowledge of the transport properties of 
fluids is essential for control of industrial processes. Many 
analytical and measurement devices are strongly depend- 
ent on the viscosity of a fluid or the thermal conductivity, 
which is proportional to the product of the viscosity and 
the heat capacity. Common examples include flowmeters, 
thermistors, and thermal conductivity detectors. In most 
applications, the direct measurement of viscosity is im- 
practical, and a calculated value  nus st be used. The 

accuracy of measurements made with such devices is 
limited by the accuracy of the determination of the vis- 
cosity of a gas mixture. 

The Bureau of Mines has developed a method of cal- 
culating the viscosity of a mixture of gases that is both 
simple and accurate. Simplicity is measured by the 
amount of information needed to perform a calculation. 
Accuracy is measured by the root-mean-square (RMS) 
deviation of calculated results from experimental results. 

VISCOSITY EQUATIONS 

There are a variety of equations available for the esti- systems. It requires the evaluation of a complicated 
mation of the viscosity ( p d  of a mixture of gases. These coefficient (b,,) for each pair of components in a mixture. 
are separated into three major groups: sums of partial vis- The evaluation requires only the viscosities and the mo- 
cosities of pure gases, sums of partial viscosities including lecular weights (Mi) of the individual components. 
viscosities for interacting components, and viscosities of 
generalized fluids based on theprinciple of corresponding 
states. 

PARTIAL VISCOSITY SUMS 

These equations express the viscosity of a mixture as a 
sum of partial viscosities. This approach was originally 
taken by Graham The assumption is made that the 
total momentum transferred between adjacent layers in 
a fluid is a sum of the momenta transferred by each com- 
ponent. On this basis, partial viscosities are added. 

The equations in this group lack separate terms for 
the interaction of dissimilar molecules. The interaction is 
typically accommodated as an adjustment of the values for 
pure gas viscosities. The usual form of this adjustment is 
one or more added terms in the denominator. 

The simplest such model is Graham's model, in which 
the viscosity of a mixture is approximated by summing 
the products of the viscosities (pi) of the individual com- 
ponents and their mole fractions (4: 

This model is adequate for many mixtures in which the 
components have nearly the same moleaular weight. 
When the molecular weight ratio is different from unity, 
mixtures can deviate from this behavior greatly. 

Wilke (2) chose to use an equation derived from simple 
kinetic theory that is easily extended to multicomponent 

Golubev (3) produced graphical estimates for Wilke's 4,, 
coefficients. These coefficients are then used with the 
mole fraction in the calculation of the viscosity of the 
mixture: 

Each term represents a partial viscosity for each com- 
ponent. The denominator of each term represents an 
effort to account for interactions between differing mole- 
cules by adjusting the partial viscosity for each species 
directly. 

Wilke's equation is an extension of the equation derived 
by Schmick (4) for binary mixtures. Equation 2 and 3 can 
produce significant errors for real mixtures. 

The equation of Herning and Zipperer (5) calculates 
partial viscosities without the evaluation of Wilke's 
coefficients: 

'1talic numbers in parentheses refer to items in the list of references 

I preceding the appendix at the end of this report. 



This is a sum of partial viscosities, weighted by the square 
root of the molecular weight for each species. These 
weights are proportional to the momenta. 

The reported accuracy of equation 4 for hydrocarbon 
mixtures is 1.5% average deviation and 5% maximum 
deviation, except for hydrogen-rich mixtures. Equation 4 
is not recommended for use with mixtures containing sig- 
nificant hydrogen. 

The problem of hydrogen is handled by Brokaw (6) in 
a method that requires effective collision diameters for all 
molecules and pairs, and dipole moments for polar con- 
stituents. Brokaw reports an average deviation of 0.7% 
and a maximum of 3.7% for 25 gas pairs and 280 mixtures. 
For binary mixtures, the average deviation is 0.6% and the 
maximum is 2.5%. 

With the exception of Brokaw's equation, this group of 
equations is characterized by relative simplicity of use and 
limited accuracy. 

VISCOSITY OF INTERACTION 

This group of equations uses explicit terms for the in- 
teractions of dissimilar molecules. The form of these 
equations is that of a weighted average of the viscosities of 
the pure components, including an effective viscosity of 
interaction pij. 

Chapman and Cowling (7) give a complicated equation, 
involving the ratio of an eight-term polynomial to a six- 
term polynomial, that they call a first approximation for a 
binary gas mixture. Several terms of the equation are 
dependent on the evaluation of integrals involving the 
force law for molecular interactions. The application of 
this equation to a real mixture is not trivial, and the ex- 
tension to multicomponent systems is not clear. 

Chapman (8) presents a simplified form of the Chap- 
man and Cowling equation which has four constants (p,,, 
a,, a,, and b) for each pair of gases. These constants 
depend on the molecular masses, the law of force, and the 
temperature. For polyatomic gases, even an approximate 
force law may be unavailable. For this reason, these con- 
stants may be considered empirical. 

This form was found to agree with data by Schmitt (9) for 
argon-helium and hydrogen-oxygen mixtures to about 1%. 
The evaluation of the multiple constants makes use of this 
equation difficult, especially for multicomponent mixtures. 

Kennard (10) simplifies equation 5 even further. For 
practical purposes he reduces (5) to a quadratic in mole 
fraction with one empirical constant p,, for each pair of 
gases: 

The equations in this group are generally the most 
accurate, but the application is hindered by requirements 
for determining multiple constants or the difficulty of ex- 
tending the equations to multicomponent systems. 

CORRESPONDING STATES 

Methods based on the principle of corresponding states 
calculate properties for a hypothetical pure fluid based on 
estimated critical constants and other parameters for a 
mixture. The computer program of Ely and Hanley (11) 
applies this principle to relate a mixture to methane as a 
reference fluid. The viscosity correlation used for the 
reference fluid involves 20 coefficients. This program has 
an accuracy for methane of over 3% average absolute 
deviation (AAD). This can be considered a lower limit of 
the uncertainty expected for this program when applied 
to estimation of the viscosity of a mixture of gases. The 
authors report an AAD of 8.4% for 36 pure fluids of the 
61 that they included in their data base. They also report 
an average absolute deviation of 6.95% for 455 mixtures 
representing 26 binary systems of hydrocarbons. 

Addition of a pure fluid to the data base of the Ely and 
Hanley program requires 13 constants, including 3 critical 
constants, the molecular weight, the normal boiling point, 
the first 7 coefficients of a Taylor series in temperature 
for the heat capacity, and a parameter for correlating the 
PVT surface of the gas to that of methane. These latter 
constants may be difficult to obtain. 

Methods based upon the principle of corresponding 
states have an inherent drawback. In any selected temper- 
ature and pressure range the accuracy suffers from the 
effort to fit data simultaneously in other ranges. The vis- 
cosities of the pure components of a mixture at the tem- 
perature and pressure of interest are risually known to the 
desired accuracy. An equation that describes viscosity of 
an intermediate range of mixtures at a f ~ e d  temperature 
and pressure can be expected to be more accurate than 
one that describes viscosity of a specified mixture over 
wide ranges of temperature and pressure. 

Reid, Prausnitz, and Poling (12) compared several 
methods for calculating gas mixture viscosities, including 
those of Wilke (equation 3) and of Herning and Zipperer 
(equation 4). They used data for 10 gas pairs, represented 
by 34 binary mixtures. The pairs were selected to repre- 
sent a broad range of gases, including hydrogen, ammonia 
and other polar molecules, light hydrocarbons, oxides, 
halogenatedegases, nitrogen, and n-pentane. The RMS 
deviations for equations 3 and 4 respectively were 4.68% 
and 6.17%. For two methods based on corresponding- 
states calculations by Lucas, and by Chung and co-workers, 
Reid found RMS deviations of 5.29% and 6.45% 
respectively. 



DEVELOPMENT OF THE EQUATION 

To relate the viscosity (p) of a gaseous mixture to its 2 iJZij 
composition, a mixing equation was developed through f = -. 

~ . d * v ~  
(10) 

logical analysis of the form that it should take, rather than 
from purely theoretical premises. 

In a mixture of gases at thermal equilibrium, the aver- 

VISCOSITY VERSUS FLUIDITY age kinetic energy (K) of each molecule is related to 
Boltzmann's constant (k) and absolute temperature (T) by 

Viscosity could be described as the resistance of a fluid 
to the transport of momentum, Consider a shear applied K=-, 3. k.T 
to a fluid by an apparatus such as a fan. A given shear 2 (11) 

will create less disturbance at a given distance from the 
point of application if the fluid is more viscous. The add- The h e t i c  enerfl of a molecule of mass (m) is given by 
ing of partial viscosities pioneered by Graham is an ap- 
proximation based on empirical results for very few sys- m v  2 
terns, There is no physical basis for assuming that partial K = - ,  2 (12) 

viscosities are additive. 
Mmell 's equation (13) shows gas viscosity is the prod- If V represents the molar volume of the gas, the density 

uct of the mean free path (1) of the molecules, the density is m/V, and the denominator on the right of equation 10 
(d), and the average velocity (v) with a proportionality becomes 
constant (C): 

Results of different h e t i c  theory treatments for the nu- whkh is proportional to the temperature and independ- 
meric value of C range from 0.%%7 to 0.5 (7, p. 218; 14, ent of the compos~t~on of the mixture, * e  * A  
f3, LO). The fluidity bf a mixture of gases contains additive con- 

The mean free path of a may be defmed as tributions based on molecular collision frequencies. These 
the average velOdty divided the Irequency ('1 col- contributions - be conveniently expressed in terms of 
lisions with other molecules: the concentrations and the properties of the components. 

A mixing equation for fluidity was developed, When the 

(8) fluidity of a mixture is determined, the viscosity follows as 
the reciprocal of the fluidity. 

The mean free path is not a simple function of the state or 
composition of the fluid. 

The overall collision frequency is a sum of terms for 
collisions (Zij) between all possible pairs of molecules: 

The collision frequency Zij for two molecules is propor- 
tional to the product of their concentrations. Z is there- 
fore a sum of second degree terms in concentration. 2: is 
thus more convenient than 1 for treatment of the prop- 
erties of mixtures. 

The reciprocal of the viscosity is called the fluidity (9. 
Fluidity may be described as the ability of a fluid to trans- 
port momentum. This quantity is directly related to the 
overall collision frequency. Combining equations 7,8, and 
9 to express fluidity produces the equation 

MOMENTUM FRACTION 

Mole fraction is often the variable of choice for ex- 
pressing concentrative properties of mixtures, Viscosity is 
not a concentrative property. Viscosity and fluidity are 
associated with the transport of momentum from one 
point in the fluid to another. This suggests that the fluid- 
ity of a mixture of gases should depend upon the momenta 
of the separate components rather than just their concen- 
tratiom. The momentum fraction is used instead of the 
mole fraction or concentration as the main compositional 
variable. 

The momentum is related to the molecular weight and 
temperature. The momentum (p) of a molecule is given 
by 

p = rn-v. (14) 



The momentum is then related to the temperature 
using equations 11 and 12: 

At thermal equilibrium, the temperatures of all compo- 
nents of a mixture are the same. The average momentum 
of each component is thus proportional to the square root 
of its molecular weight. The Herning-Zipperer equation 
given above is equivalent to a momentum-weighted sum of 
partial viscosities. 

The momentum fraction (yJ'of a component is defined 
as that fraction of the total momentum within a mix- 
ture that is associated with a particular component. If the 
mole fraction of a component is represented as x,, the 
amount of momentum associated with that component is 
xi \I-, and the momentum fraction associated 
with a component of molecular weight M, becomes 

The following treatment of the fluidity and the viscosity 
of mixtures of gases uses this variable. 

The frequency of collisions between two types of mole- 
cules Zij can be expressed in terms of the product of their 
momentum fractions 

Zij " yi'yj. 

The fluidity of a pure gas therefore depends upon the 
square of the average momentum of the molecules. The 
fluidity mixing equation is a quadratic in momentum 
fraction. 

The following equation, with scalar mixing coefficients 
Bij, is used to express fluidity for a gas mixture 

This equation is a mixing equation of second degree in the 
momentum fraction. 

FLUIDITY OF INTERACTION 

When i + j, fij represents an effective fluidity of inter- 
action between the ith and jth component. When i = j, fij 
represents the fluidity of the pure gas i under the same 
conditions of temperature and pressure as those of the 
mixture. The fluidity of interaction is estimated with the 
quantity 

f.. = 1 
(19) 

" cl;;.~;;' 
The scalar coefficients Bij are related to the efficiency 

with which momentum is transferred between molecules 
in a collision. If equation 18 is to reduce to an identity 
for a pure gas, Bij must be unity when i = j. In cases 
where i + j, Bij will depend on the weights of the mole- 
cules in the collision. 

EFFICIENCY OF MOMENTUM TRANSFER 

A dilute gas may be defined as a gas in which potential 
energy due to intermolecular forces becomes i n ~ i ~ c a n t  
compared to translational kinetic energy at some point in 
the path of a molecule between collisions, Thus the mean 
free path in a dilute gas is no less than twice the effective 
range of the intermolecular forces. Under this constraint, 
simultaneous collisions between three or more bodies are 
sufficiently rare that they do not contribute to the overall 
properties of the system. 

The efficiency of the transfer of momentum in a colli- 
sion between two bodies depends upon their masses. The 
exact form of this dependence can be found with elemen- 
tary mechanics (17). 

Consider the elastic collision of two spherical bodies 
of mass m, and m, respectively, with initial velocities vli 
and v,. While the bodies are within the effective range of 
the forces of interaction, accelerations induced by these 
forces alter the details of their trajectories. Beyond the 
range of these forces the trajectories are asymptotic to the 
trajectories required to satisfy conservation of momentum 
and energy. 

Components of velocity perpendicular to the line be- 
tween the centers of the bodies can be resolved into con- 
tributions to the angular and translational momenta of the 
two-body system. These momenta are unaltered by colli- 
sions. Only the radial momenta of the two bodies are 
altered by a collision. The components of the velocities 
parallel to the line between the centers are sufficient to 
describe the transfer of momentum. 

The equations for conservation of momentum and en- 
ergy for this system relate the masses, initial velocities, 
and final velocities (v,,) and (v,,): 



v,, and v,, can be found by solving these equations respect to interchange of indices. We should expect this 
algebraically: for our mixing coefficients. 

The coefficient B,, is assumed to be dependent upon 

6% - 4 2.m2 EU by a simple power law, with the exponent (A) deter- 
Vlf  = 2) 'Vli + 'v2i. (21a) mined empirically: 

(m1 + m (m1 + m2) 
B . .  = E. .A. 

(m2 - m1) 2.m1 
'J 'J (27) 

V2f = 'V2i + 
(m1 + m2) (m1 + m2) 

"li ' (21b) This exponent is assumed to be the same for all pairs and 
is the only empirical constant in the mixing equation. 

Multiplying equation 21a by m, yields an expression for 
the final momentum of body 1: FLUIDITY OF A MIXTURE 

2.ml.m2 Including equation 27 for the effect of dissimilar masses 
ml-vlf = (ml - m2) .ml.vli + vzi. (22) on the efficiency of momentum transfer refines the ex- 

@ %  + m2) (ml + m2) pression in equation 18 for the fluidity of a gas mixture. 

The final momentum of body 1 is the sum of two terms. 
The first term represents what remains of its initial mo- 
mentum after transferring some momentum to body 2. (28) 
The secbnd term represents the portion of the momentum 
of body 2 that body 1 received in the collision. 

The efficiency (E,,) with which body 2 transfers its The symmetry of the expression is such that the ij terms 
momentum to body 1 is found by dividiig the second term me equal the ji terms. 
by the original momentum of body 2: For a pure gas, equation 28 reduces to the usual def- 

inition of fluidity: 

Repeating this with (21b) and m, produces Equation 28 is easily applied to mixtures of any number 
of com~onents. It contains one empirical constant which 
remain; the same for all mixtures of gases. 

In the case of a simple binary mixture, equation 28 as- 
sumes the form 

for the efficiency with which body 1 transfers momentum 
to body 2. 

The mean efficiency for this interaction, weighted for 
the momenta of the bodies, is 

~ 1 . ~ 1 2  + ~ 2 . ~ 2 1  Using equation 16, equation 28 can be recast in mole 
El,, = 

Y l  + Y2 
(25) fractions as a ratio of quadratics. For a binary mixture it 

is comparable to equation 5, the simplified Chapman 

 hi^ can be simplified equation 16 to the following equation. However the four empirical constants per binary 

expression: mixture required for equation 5 are replaced by functions 
of the pure component masses and viscosities. Equation 
28 equals the simplified Chapman equation in accuracy, 

2.66 as will be shown below. 
El,, = 

(ml + m2) ' The only information required to apply equation 28 to 
a mixture is the composition, along with the molecular 

which has a maximum value of unity for bodies of equal weight and viscosity of each component at the temperature 
mass. It is also nonnegative and is symmetrical with and pressure of interest. 
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RESULTS 

The value of the empirical constant A was estimated 
using reported viscosities for 35 gas pairs. The quantity 
Bi,j was calculated from data for 164 mixtures using 
equation 18. The logarithm of Bi,i was then plotted against 
the logarithm of EI,j (fig. 1). The RMS deviations were 
found to be relatively insensitive to small changes in A. 
The miminum RMS deviation for the predicted viscosities 
is 1.28%, occurring at a value of 0.375 for A. The value 
1/3 yields an RMS deviation of 1.45%. The plotted slope 
of 1/3 was selected as simple and consistent with the data. 

The dependence of BI,j on Ei,i suggests that the inter­
action of molecules of different masses does not conform 
to the conditions necessary for application of the principle 
of corresponding states. Transfer of momentum during 
collisions between molecules depends specifically on the 
masses of the individual molecules. Viscosity is inherently 
composition dependent and is not well modeled by a hypo­
thetical pure fluid. 

Equation 28 was tested against 752 experimental val­
ues reported by various workers for 40 gas pairs. Report­
ed temperatures for the viscosities ranged from -78 to 
276.9° C. Pressures were not generally reported but are 
assumed to be low enough for the gases to be treated as 
dilute. Table 1 summarizes the comparison of calculated 
and experimental values for each mixture. Data for three 
gas pairs were obtained from two different sources each. 

The average deviation (bias) is -0.84%. The AAD is 
1.29%. The overall RMS error is 1.99%. The maximum 
RMS error found for a given system is 5.82%, for the 
neon-carbon dioxide pair. 

The calculated values were then correlated with ex­
perimental values for the 752 data points, as shown in 
figure 2. The measured viscosities ranged from 7.31 to 
43.10 micropascal seconds (73.1 to 431.0 micropoises). 

Three of the five gas pairs of table 1 with the highest 
RMS error include ammonia as one component. Calcula­
tions for the ammonia-ethylene system with equation 28 
provide excellent agreement with 1.58% RMS error 
(1.45% AAD). 

Wilke reported difficulty with fitting his equation to 
the hydrogen-argon system. Equation 3 fits the hydrogen­
argon data of Trautz and Binkele (23) with 4,73% RMS 
error (4.33% AAD). Equation 28 fits the same data with 
1.58% RMS error (-1.43% AAD). 

The Herning-Zipperer method (equation 4) has a re­
ported 1.5% average deviation for hydrocarbons. Equation 
28 fits four pairs of hydrocarbon gases with 0.33% RMS 
error (0.16% AAD). Data were examined for 15 pairs 
that included hydrogen as 1 component. Equation 28 fits 
12 of these pairs within 2% RMS error (1.30% AAD). 
The Herning-Zipperer equation is not recommended for 
use with mixtures containing significant hydrogen. 

Table 1.-Accuracy of equation 28 compared with reported viscosities 
of various binary gas mixtures 

Binary Reference Points RMS Binary Reference Points RMS 
mixture used error, % mixture used error, % 

CH4/C2H6 • ••• 20 20 0.11 HJ02 ., .... 21 24 1.08 
NJCO ...... 21 24 .12 NJC02 ..... 19 9 1.16 
C3HJC3Hs ... 3 12 .13 HJC3Hs ..... 22 24 1.23 
CO/02 ...... 21 18 .20 Ne/Ar ....... 18 5 1.30 
He/Ne ...... 23 11 .22 C2H4/CO .... 21 24 1.31 
NJ02 ...... 21 19 .22 HJC3H6 ••••• 3 36 1.39 
N20/C02 .... 22 19 .25 HJC02 ..... 22 24 1.47 
C2HJC3Hs ... 20 12 .29 HJAr ....... 23 16 1.58 
CH4/C3Hs ' ... 20 12 .33 NH3/C2H4 • ••• 3 24 1.58 
He/Ne ...... 18 10 .38 HJ2-C4Hs ... 3 32 1.82 
He/Ar ....... 24 12 .39 C2H4/02 ..... 21 15 2.10 
NJNO ...... 3 6 .40 HJN20 ..... 22 16 2.22 

HJN2 ······ . 25 24 .55 N2O/C3Hs ... 22 16 2.28 
He/Ar ....... 23 8 . 56 Ar/C02 • ••••• 19 12 2.64 
HJC2H4 ••••• 26 33 .59 COJC3Hs ... 22 16 2.80 
HJHe ...... 23 12 .65 He/Kr . ..... 19 16 3.74 
HJCH4 ..... 20 16 .67 NH3/N2 . .... 3 20 3.80 
HJCO ...... 25 24 .82 HJNH3 ..... 3 23 4.39 
Na/Ar ....... 23 12 .90 HJNe ..... ',; 23 16 4.49 
He/N2 ., .... 19 15 .92 NH3/02 . .... 3 15 4.91 
NJC2H4 ••••• 21 24 . 99 Ne/C02 ..... 27 10 5.82 

HJCJ H6 •••• • 20 16 1.00 

Total points ~ 752, RMS error = 1.99%, AAD = 1.29%, bias = -0.84%. 
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Figure 1.-Evaluation of the empirical constant A using 164 mlxtures. 

EXPERIMENTAL VISCOSITY (micropascal-seconds) 

Figure 2.4omparlson of calculated and experimental viscosltles for 752 mlxtures - llne has 
slope of unity. 



The simplified Chapman equation (equation 5) is re- 
ported to fit the helium-argon pair and the hydrogen- 
oxygen pair to 1%. Equation 28 fits the helium-argon pair 
to 0.56% RMS error (Trautz' data) and to 0.39% RMS 
error (Kestin's data). The respective AADs are 0.48% 
and 0.32%. This is an improvement over the simplified 
Chapman equation. The hydrogen-oxygen pair is fitted to 
1.08% RMS error (0.84% AAD). This is comparable to 
the simplified Chapman equation. 

Ten data points were found to contribute over 20% of 
the sum of the squared deviations. With the exception 
of these 10 data points, absolhte errors were less than 
6.5%. The remaining set was fitted with an RMS error of 
1.81% (1.19% AAD) and an average deviation (bias) of 
-0.74%. Five data points fitted with absolute errors over 
6.5% were from the neon-carbon dioxide pair. The other 
five points were from gas pairs that include ammonia as 
one component. 

The 25 data points that showed the largest absolute 
errors in the fit were from only 4 sets of data. Three of 
these sets were for gas pairs that included ammonia, and 
one set was for the hydrogen-neon pair. Neglecting these 
4 gas pairs, the other 706 data points are fitted with less 
than 4.75% maximum absolute error. The RMS error for 
the reduced set is 1.47% (0.99% AAD); the bias is -0.51%. 

Of all the models described, only Brokaw's appears able 
to fit data more closely. Brokaw's model requires effec- 
tive collision diameters for all components, and dipole 
moments if applicable, in addition to pure component vis- 
cosities and molecular weights. 

The development of our model assumes elastic col- 
lisions of spheres. Nonspherical molecules have internal 
energy levels for rotational, vibrational, and electronic 
energies. If these internal energy levels are comparable to 
thermal energies, interaction becomes possible between 
the translational energy and internal energy levels. The 
collisions are then no longer elastic. This may account for 
the difficulty in describing data for ammonia mixtures. 

Several models were compared that require only the 
viscosity and molecular weight for each component against 
data for the binary systems of helium-neon (18) and 
helium-nitrogen (19) at 20' C. These systems were se- 
lected because the high molecular weight ratio and the 
difference between the pure gas viscosities would accen- 
tuate differences between the models. The models used 
were the linear model (equation I), Wilke's equation 
(equation 3), and the ~ e r n i n ~ - ~ i ~ ~ e r e r  model (equa- 
tion 4), as well as equation 28. The calculated results are 
plotted against the data in figures 3 and 4. 

MOMENTUM FRACTION OF HELIUM 

Figure 3.--Comparison of viscosity equations for helium-neon system at 20" C. (1) Linear 
equation (1); (2) Wllke equatlon (2); (3) Herning-Zipperer equatlon (5); (4) equatlon 28 of this 
work; (+) data of Kestln and Nagashima (18). 



MOMENTUM FRACTION OF HELIUM 

Flgure 4.--Comparison of vlscoslty equations for hellum-nltrogen system at 20' C. (1) Lln- 
ear equatlon (1); (2) Wllke equatlon (2); (3) Hernlng-Zlpperer equation (5); (4) equatlon 28 of 
this work; (t) data of Kestln, Kobayashl, and Wood (19). 

Figure 3 compares the models to the data for the 
helium-neon system. In this system the more massive 
molecule has greater viscosity. The linear model seriously 
underestimates the actual viscosity. Wilke's equation sig- 
nificantly overestimates, but the errors are smaller than 
with the linear model. The simple equation of Herning 
and Zipperer becomes a straight line when plotted against 
momentum fraction. In this case, the Herning-Zipperer 
equation fits the data better than all other models except 
equation 28. 

Figure 4 compares the models to the data for the 
helium-nitrogen system. In this system the less massive 
molecule has greater viscosity. The interaction of the 
differences in viscosity and the differences in molecular 
weight produces a dramatically changed plot. The 
Herniug-Zipperer equation is now worse than a linear 
model. The model of Wilke is now able to fit the data 
almost within experimental error. Equation 28 performs 
as well as Wilke's in this case. 

CONCLUSIONS 

A simple method for calculating the viscosity of a molecular weights and the viscosities of the pure com- 
mixture of gases has been developed. The development is ponents at the temperature and pressure of interest. For 
based on additive contributions to the fluidity and use of most binary mixtures of gases, the equation performs at 
the momentum fraction as the main compositional vari- least as well as the best available method using com- 
able. The efficiency of transfer of momentum between parable data. The deviations found are 1.29% AAD and 
bodies of different masses in an elastic collision is consid- 1.99% RMS. The bias is -0.84% and the maximum RMS 
ered. One global empirical constant is used. The model error found for one system is 5.82%. 
is easily applied to .multicomponent mixtures. 

The only data required by this equation to calculate 
viscosity for a mixture of known composition are the 
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APPENDIX.-LIST OF SYMBOLS 

exponent of momentm transfer efficiency 

constmt in simplifed Chapman equation 

mixing coefficient 

constant in simplifed Chapman equation 

Maxwell's viscosity proportionality constant 

density of gas 

efficiency of momentum transfer 

fluidity 

designator for one component of a mixture 

designator for another component of a mixture 

average kinetic energy 

Bollzmilnn's constant 

mean free path 

molecular weight 

mass 

viscosity 

momentum 

Wilke's coefficient 

absolute temperature 

molar volume 

average velocity 

final velocity 

initial velocity 

mole fraction 

momentum fraction 

overall collision frequency 

binary collision frequency 
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